

MODEL TI-007DLX

ULTRASONIC THICKNESS GAUGE

Operating Manual

TABLE OF CONTENTS

1.0	Introdu	ıction	3
	1.1 Di	sclaimer	
2.0		l, Menu, Display & Connectors	4
		N/OFF/ENTER Key	
		RB 0 Key	
	2.3 CA	AL Key	
		AIN Key	
		CAN Key	
	2.6 +/-	- INCREMENT/DECREMENT Keys	
	2.7 M	ODE Key	
	2.8 M	ENU Key	
	2.9 Th	ne Display	
	2.10 Tl	he Transducer	
	2.11 To	pp & Bottom End Caps	
3.0	Princip	oals of Ultrasonic Measurement	11
	3.1 Ti	me versus thickness relationship	
	3.2 Su	itability of materials	
	3.3 Ra	ange of measurement and accuracy	
	3.4 Co	puplant	
	3.5 Te	emperature	
	3.6 M	easurement modes	
4.0		ng the measurement mode	14
	4.1 W	hich Mode and Transducer do I use for my applications?	
5.0	Making	g measurements	16
	5.1 Pr	obe Zero	
	5.2 M	aterial Calibration	
6.0	Throug	gh Pain Measurement	22
	6.1 Int	troduction	
	6.2 M	ultimode Transducers	
7.0	Velocity	y Gauge	23
	6.1 Ve	elocity Gauge (VX)	
	6.2 Ca	alibration to a known thickness	
	6.3 Ca	alibration to a known velocity	
8.0	Additio	onal features	26
	8.1 G		
		ight-speed Scan	
		arm	
		fferential	
	8.5 Ut	nits	

	8.6 Lite	
	8.7 Beep	
	8.8 Probe Type	
	8.9 Velocity (VX)	
	8.10 Lock	
	8.11 Factory Defaults	
9.0	Data Storage	34
	9.1 Introduction	
	9.2 Opening a Data File	
	9.3 Storing a Measurement	
	9.4 Clearing a File	
	9.5 Clear All Files	
	7.5 Clear III Thes	
10.0	Dsta Transfer & Power Options	37
	10.1 Connectivity	
	10.2 Opening a File	
	10.3 Copying Opening Files	
	10.4 Line Power	
	2017 Emo 1 0 101	
11.0	Appendix A - Velocity Table	39
12.0	Appendix B - Application Notes	40
13.0	Warranty	42
	•	

1.0 INTRODUCTION

The Checkline model TI-007DLX is a precision ultrasonic micrometer. Based on the same operating principles as SONAR, the TI-007DLX is capable of measuring the thickness of various materials with accuracy as high as ± 0.0001 inches, or ± 0.001 millimeters. The principle advantage of ultrasonic measurement over traditional methods is that ultrasonic measurements can be performed with access to only one side of the material being measured.

1.1 Disclaimer

While the TI-007DLX is a basic digital instrument, it is equipped with a number of measurement modes and transducer options for additional versatility. It is strongly recommended that the contents of this manual be read in its entirety to avoid erroneous measurements based on operator error. The user is solely responsible for proper use, setup and interpretation of the measurements acquired.

2.0 KEYPAD, MENU, DISPLAY & CONNECTORS

The Keypad

2.1 ON/OFF/ENTER Key

The ON/OFF/ENTER key powers the unit ON or OFF. Since the same key is also used as an ENTER key, the gauge is powered off by pressing and holding down the key until the unit powers off.

Once the gauge is initially powered on, this key will function as the ENTER key, similar to a computer keyboard. This key will be used to select or set a menu option.

NOTE: Unit will automatically power off when idle for 5 minutes. All current settings are automatically saved prior to powering off.

2.2 PRB 0 Key

The PRB 0 key is used to "zero" the TI-007DLX in much the same way that a mechanical micrometer is zeroed. If the gauge is not zeroed correctly, all of the measurements that the gauge makes may be in error by some fixed value. Refer to section 5.1 for a further explanation of this important feature.

2.3 CAL Key

The CAL key is used to enter and exit the TI-007DLX 's calibration mode. This mode is used to adjust the sound velocity value that the TI-007DLX will use when calculating thickness. The tool will either calculate the sound-velocity

from a sample of the material being measured, or allow a known velocity value to be entered directly. This provides increased linearity between transducers. Refer to section 5.2 for an explanation on the various calibration options.

2.4 DATA Key

The DATA key accesses the data logging section of the TI-007DLX, which consists of 50 sequential (single column) files with 250 storage locations per file. Refer to section 8.8 for an explanation on the various calibration options.

2.5 CLR Key

The CLR key is used in conjunction with the data logging section to clear a single stored memory location. Refer to section 8.8 for an explanation on the various calibration options.

2.6 +/- Increment/Decrement Key's

The +/- Keys are used to increment/decrement values, navigate menus, and select menu options.

2.7 MODE Key

The MODE key toggles the measurement modes. If a delay line transducer (dLY) is selected from the PROB menu option, echo-echo (E-E) and interface-echo (I-E) modes will be toggled. If a contact transducer (Con) is selected, pulse-echo (P-E) and echo-echo (E-E) modes will be toggled. Finally, if the plastic transducer (PLAS) option is selected, the thickness options thin (thin) and thick (thK) will be toggled. The measurement modes and transducer styles offer the flexibility to address specific application scenarios. Refer to section 7.0 for an explanation on the various calibration options.

2.8 MENU Kev

The MENU key is used to access and set all of the additional features of the TI-007DLX that are not at the top level of the keypad with a dedicated key. The features and setting are outlined in the table below:

Here's a quick overview of navigating through the features in MENU:

	Menu Feature Items								
Gain	Multi	Scan	Alarm	Diff	Unit	Lite	Веер	Probe	VX
VLOW	Aluminum	On	On	On	English	On	On	Delay	On
LOW	Steel	Off	Off	Off	Metric	Off	Off	Plaastic	Off
MED	Stainless		Options	Options	Options	Options		Contact	
HIGH	Iron		Set Lo	Set Nominal	LOW	Lo		Options **	
VHI*	Plexiglass		Set Hi		HIGH	Med		.125	
	PVC					High		.250	
	Plastic							.375	
	Poly Urea							.500	
	User 1								
	User 2								

^{*} Displayed only when the contact transducer option has been selected.

- 1. Press the **MENU** key once to enter the sub menu items
- 2. Press the + and keys to toggle through the features.
- 3. To enable or edit the status of any feature, press the **ENTER** key.
- 4. The edit icon will start blinking to indicate that the TI-007DLX is currently in **EDIT** mode.
- 5. Press the + and keys to toggle through the setting options.
- Press the ENTER key to accept changes and return to the top level of features, or the MENU key at any time to abort changes and return the measurement screen.

2.9 The Display

The TI-007DLX uses a custom glass LCD backlit low temperature display for use in a variety of climate conditions. It contains graphic icons, as well as both 7 and 14 segment display areas. Let's take a closer look and what all these things are telling us:

A. Edit: This icon will be displayed, and blinking, to let a user know when they are in an edit mode to change a value or setting.



B. Large 7 segment: The thickness measurement, velocity or alpha message will be displayed in this area.

^{**} Diameter options are only available for contact transducers.

- C. Measurement Modes: This group of icons indicates which measurement mode the TI-007DLX is currently using. The modes are pulse-echo, echo-echo, interface-echo, and plastics (PLAS).
- D. Stability/Repeatability Indicator: This is used in conjunction with the thickness measurement as a reference for the validity of the measurement. The TI-007DLX takes multiple measurements per second, and when all the vertical bars are illuminated, it's a reference that the same thickness value is reliably being measured multiple times per second.
- **E. Battery:** Indicates the amount of battery life the TI-007DLX has remaining.
- F. Backlight: When this icon is illuminated, it indicates the backlight is on.
- G. Small 7 Segment: The material velocity, speed the sound wave travels through a given medium/material, is displayed in this area, informing the user what material the TI-007DLX is currently calibrated too. This area is also used for alpha messages in the menu and edit modes.
- H. Units: This combination of icons are illuminated in different sequences to inform the user what measurement units are currently being displayed in the small 7 segment area.
- I. Small 14 Segment: Displays the current gain setting of the TI-007DLX DL. In P-E mode the options are VLOW, LOW, MED, HIGH, VHI, and LOW, MED, HIGH with modes E-E, I-E, and PLAS. MED is the default setting
- J. Units: This combination of icons are illuminated in different sequences to inform the user what measurement units are currently being displayed in the large 7 segment area. The plus/minus icon is illuminated when the DIFF (differential) feature is activated.
- K. Small 14 Segment: The material type is displayed in this area. If it is set to a value of one of the materials in our material list, it will be displayed in alpha characters indicating the material type. Otherwise it will be set to CUST, indicating custom material type.
- L. Features: The icons illuminated in this row across the bottom of the LCD display which features are currently enabled. For a complete list of the menu features in the TI-007DLX, Refer to section 2.0 for a list. The TI-007DLX can be locked once calibrated, to avoid accidently changing the calibration. When this icon is illuminated, the TI-007DLX is in lock mode. Refer section 8.10 for an explanation on locking the TI-007DLX.
- **M. File/Loc:** This area is exclusively for the data storage section of the TI-007DLX. The icons and segment fields represent the current file open, and the current storage location in the file. Refer to section 9.0 for an explanation of the data storage feature in the TI-007DLX.

2.10 The Transducer

The transducer is the "business end" of the TI-007DLX. It transmits and receives ultrasonic sound waves that the TI-007DLX uses to calculate the thickness of the material being measured. The transducer connects to the TI-007DLX via a single shielded coaxial cabale with microdot connectors.

Delay Line Transducer

The single element delay line transducer is commonly used with the TI-007DLX for materials with an approximate range of 0.006" to 1.00" in steel. The measurement modes used with this style of transducer are echo-echo (E-E) and interface-echo (I-E). Echo-echo mode will be used for the lower end of the measurement range, while interface-echo for the upper end of the measurement range. Interface-echo mode measures from the end of the delay line to the first return echo from the back wall of the material, while echo-echo measurements are made between the first and second return echoes from the back wall of the material. The frequency range for the versions Electromatic commonly supply are from 10MHz to 20MHz.

The Delay line is fastened to the transducer with a retaining ring. A drop of couplant is applied between the delay line and transducer body. Refer to the diagram above. The couplant should be checked on a regular basis to keep it from drying out. To replenish, unscrew the retaining ring counterclockwise, separate the delay line from the body, 'clean both surfaces', apply a drop of couplant, and reassemble.

Delay Line Graphite Tip (for use with Plastics Mode)

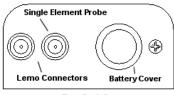
The TI-007DLX has a special "PLAS" mode that uses the standard delay line transducer, as described above, but with a replaceable graphite delay tip. This mode and tip should be used when the velocity of the plastic material measured is similar to the velocity of the standard acrylic delay tip, and not achieving any signal/measurement. The graphite tip creates a 'mismatch' between the tip material and the plastic material measured.

The Delay line is fastened to the transducer with a retaining ring. A drop of couplant is applied between the delay line and transducer body. Refer to the diagram above. The couplant should be checked on a regular basis to keep it from drying out. To replenish, unscrew the retaining ring counterclockwise, separate the delay line from the body, 'clean both surfaces', apply a drop of couplant, and reassemble.

Contact Transducer

The single element contact style transducers are commonly used for materials with an approximate range of 0.040" to the maximum range of the TI-007DLX rated in steel and depending on the transducers diameter and frequency. The frequency range is 5.0 to 10 MHz, with diameters available at 0.125, 0.250, 0.375 and 0.500 inches. The measurement modes used with this style of transducer are pulse-echo (P-E) and echoecho (E-E).

Measuring


In order for the transducer to do its job, there must be no air gaps between the wear-face and the surface of the material being measured. This is accomplished with the use of a "coupling" fluid, commonly called "couplant". This fluid serves to "couple", or transfer, the ultrasonic sound waves from the transducer, into the material, and back again. Before attempting to make a measurement, a small amount of couplant should be applied to the surface of the material being measured. Typically, a single droplet of couplant is sufficient.

After applying couplant, press the transducer (wear face down) firmly against the area to be measured. The Stability Indicator should have six or seven bars darkened, and a number should appear in the display. If the TI-007DLX has been properly "zeroed" (see page 16) and set to the correct sound velocity (see page 17), the number in the display will indicate the actual thickness of the material directly beneath the transducer.

If the Stability Indicator has fewer than five bars darkened, or the numbers on the display seem erratic, first check to make sure that there is an adequate film of couplant beneath the transducer, and that the transducer is seated flat against the material. If the condition persists, it may be necessary to select a different transducer (size or frequency) for the material being measured. See page 8 for information on transducer selection.

While the transducer is in contact with the material that is being measured, the TI-007DLX will perform four measurements every second, updating its display as it does so. When the transducer is removed from the surface, the display will hold the last measurement made.

2.11 Top and Bottom End Caps

Bottom End Cap

The top end cap is where all connections are made to the TI-007DLX. The diagram above shows the layout and description of the connectors.

Transducer Connectors

Refer to Diagram: The transducer connectors and battery cover/probe zero disk are located on the TI-007DLX 's top end cap. The transducer connectors are of type Lemo "00".

Probe Zero Disk & Battery Cover

Refer to Diagram: The Battery cover is the large round disk shown in the diagram.

NOTE: This same disk is also used as a probe zero reference disk. Simply remove the cover when replacing the batteries (2 AA cells). When performing a manual probe zero function, simply place the transducer on disk making firm contact. Important: Be sure the battery polarity is correct, which can be found on the back label of the TI-007DLX.

NOTE: Rechargeable batteries can be used, however they must be recharged outside of the unit in a standalone battery charger.

USB-C Connector

Refer to Diagram: The USB-C connector, located on the bottom end cap, is a mini type C female connector. It is designed to connect directly from the TI-007DLX to a standard USB type A port on a PC. The cable supplied with the TI-007DLX is a USB type C to a USB type A (pt# N-003-0330). See section 9.1 for information on connectivity.

NOTE: This connector is also used to upgrade the TI-007DLX with the latest version of firmware.

3.0 PRINCIPLES OF ULTRASONIC MEASUREMENT

3.1 Time versus thickness relationship

Ultrasonic thickness measurements depend on measuring the length of time it takes for sound to travel through the material being tested. The ratio of the thickness versus the time is known as the sound velocity. In order to make accurate measurements, a sound velocity must be determined and entered into the instrument.

The accuracy of a thickness measurement therefore depends on having a consistent sound velocity. Some materials are not as consistent as others and accuracy will be marginal. For example, some cast materials are very granular and porous and as a result have inconsistent sound velocities.

While there are many different ultrasonic techniques to measure thickness, which will be discussed below, all of them rely on using the sound velocity to convert from time to thickness.

3.2 Suitability of materials

Ultrasonic thickness measurements rely on passing a sound wave through the material being measured. Not all materials are good at transmitting sound. Ultrasonic thickness measurement is practical in a wide variety of materials including metals, plastics, and glass. Materials that are difficult include some cast materials, concrete, wood, fiberglass, and some rubber.

3.3 Range of measurement and accuracy

The overall measurement capabilities, based on the wide variety of materials, is determined by the consistency of the material being measured

The range of thickness that can be measured ultrasonically depends on the material type and surface, as well as the technique being used and the type of transducer. The range will vary depending on the type of material being measured.

Accuracy, is determined by how consistent the sound velocity is through the sound path being measured, and is a function of the overall thickness of the material. For example, the velocity in steel is typically within 0.5% while the velocity in cast iron can vary by 4%.

3.4 Couplant

All ultrasonic applications require some medium to couple the sound from the transducer to the test piece. Typically a high viscosity liquid is used as the medium. The sound frequencies used in ultrasonic thickness measurement do not travel through air efficiently. By using a liquid couplant between the transducer and test piece the amount of ultrasound entering the test piece is much greater.

3.5 Temperature

Temperature has an effect on sound velocity. The higher the temperature, the slower sound travels in a material. High temperatures can also damage transducers and present a problem for various liquid couplants.

Since the sound velocity varies with temperature it is important to calibrate at the same temperature as the material being measured.

Normal temperature range

Most standard transducers will operate from 0°F to 150°F.

High temperature measurements

Special transducers and couplants are available for temperatures above 150°F with intermittent contact. It is necessary to cool the transducer by submerging it in water between measurements.

Modes and temperature errors

In addition to errors caused by velocity changing with temperature, some modes (measurement techniques) are affected more than others. However, multi-echo techniques offer temperature compensation help to minimize these errors.

3.6 Measurement Modes

This section will cover the different measurements modes of the TI-007DLX , the transducers required, and the reasons for using specific modes:

Pulse-Echo (P-E) Mode:

Pulse-echo mode measures from the initial pulse (sometimes referred to as an artificial zero) to the first echo (reflection). In this mode, a manual zero using the disk (battery cover) will need to be performed prior to calibrating the TI-007DLX. The transducer is placed on the reference disk located on top of the TI-007DLX, and the PRB 0 key pressed to establish a zero point for the transducer connected.

Echo-Echo (E-E) Mode through Paint:

The echo-echo mode measures between the first and second return echoes/reflections. This mode is most commonly used with the high frequency delay line style transducers for thin materials, and will also eliminate compensate for temperature. This technique will also eliminate error due to epoxy based coated surfaces by eliminating the error from the coating and measuring only the second layer or base material without having to remove the coating. The disadvantage is temperature. This technique will also eliminate error due to epoxy based coated surfaces by eliminating the error from the coating and measuring only the secondlayer or base material without having to remove the coating. The disadvantage is that two return echoes are required to effectively measure the test

material. As a result, the type and thickness of the coating will affect the ability to achieve a successful measurement. Both delay line and contact style transducers can be used for through paint/coating measurements.

Interface-Echo (IE) Mode

The interface-echo mode measures from the end of the "interface/delay line" to the first return echo/reflection. This mode can be used for thicker materials up to 1", and for attenuative materials that don't produce a sufficient second echo. The standard measuring range is approximately 0.060" up to 1.00" rated in steel, and offers temperature compensation for the heating and cooling of the transducer itself.

Plastics (PLAS) Mode

The plastics mode is a special setup for measuring thin plastics using a modified interface-echo mode. When the standard acrylic delay tip is similar in velocity to the plastic material measured, a return echo is not possible. Simply replacing the acrylic tip with our graphite tip and using the 'plastics' mode will provide the necessary mismatch necessary to measure the plastic successfully. The approximate range is 0.005" up to 0.300" depending on the type of plastic measured. This mode additionally offers temperature compensation for the heating and cooling of the transducer.

4.0 SELECTING THE MEASUREMENT MODE

4.1 Which mode & transducer do I use for my application?

High penetration plastics and castings

High penetration plastics and castings The most common mode for these types of applications is pulse-echo. Thicker cast iron and plastics applications will generally require lower frequencies depending on the material type and thickness. Frequencies from 2.25MHz to 10MHz are common. Larger diameters offer greater penetration power based on the size of the crystal.

Thin Materials & Tough Access Areas

The high frequency delay line transducers are suitable when measuring thinner consistent materials that pass sound easily, such as steel, aluminum, titanium, etc. They offer temperature compensation with a suitable range up to 1" depending on the delay line used. Replaceable cone tip options are also useful for difficult access areas and diameters

Thru Paint & Coatings

It's common that users will be faced with applications where the material will be coated with some type of protective paint or other epoxy based material. Since the velocity of the coating is approximately 3 times slower than that of steel, pulse-echo mode will produce an error if not removed. However, echo-echo mode can be used with either delay line or contact style transducers to eliminate the error from the coating, and measure only the base material. High damped or high frequency transducers are most suitable for echo-echo measurement mode.

Plastics

Thin plastics are best suited using the delay line transducer with either the acrylic delay tip in echo-echo or interface-echo modes. If the plastic measured is similar in velocity to the acrylic tip and not measuring adequately, the replaceable graphite tip and plastics mode will serve as the best option. Thicker plastics will generally require a lower frequency contact style transducer for additional penetration. Increasing the diameter of the transducer will also offer greater output.

High temperature

High temperature applications will require a special delay line material that isn't as absorptive of temperature.

Noisy Material

Materials such as titanium, stainless steel, and aluminum may have inherent surface noise issues (mirroring effect). This can be avoided using a high frequency delay line variations in the transducer, transducer in either echo-echo or interface-echo modes. If using a contact style transducer, a high frequency option should be considered.

Restricted access

Measuring materials with extreme curvatures or restricted access are best suited for higher frequencies and smaller diameter transducers or tip options.

5.0 MAKING MEASUREMENTS

The steps involved in making measurements are detailed in this section. The following sections outline how to setup and prepare your TI-007DLX for field use. In pulse-echo mode the probe zero must be performed on the reference disk (battery disk) attached to the top of the instrument. This compensates for variation in the transducer. In all modes the sound velocity must be determined. The sound velocity is used to convert the transit time to a physical length. The sound velocity can be selected from the material chart at the end of this manual, or for greater precision determined by measuring and calibrating from a known thickness of the actual material. To enter the velocity from a table, look up the material on the chart in the appendix of this manual and refer to the section below on Calibration to a Known Velocity. To determine the velocity of a single sample, refer to the Material Calibration section on page 17.

When measuring curved materials, it's more accurate to calibrate from two test points, one at the minimum limit of the target thickness and one at the maximum limit. In this case the reference disk is not used, and considered a 'two-point' calibration described on page 19.

5.1 Probe zero

A probe zero is only necessary if a contact style transducer is used in pulse-echo mode, and the contact option is enabled in the menu. A probe zero should be done prior to calibrating the instrument, and done on a periodic basis when a temperature gradient is an issue. If the TI-007DLX is not zeroed correctly, all measurements will be in error by some fixed value. In order to perform a probe zero, you must be in pulseecho mode.

Setting the zero point of the TI-007DLX is important for the same reason that setting the zero on a mechanical micrometer is important. It must be done prior to calibration, and should be done throughout the day to account for any temperature changes in the probe. If the TI-007DLX is not zeroed correctly, all the measurements taken may be in error by some fixed value. The zero can only be performed with the measurement mode set to pulse-echo (P-E). Therefore, if the TI-007DLX is to use the echo-echo (E-E) measurement mode and a manual zero is being performed, the TI-007DLX will argue by briefly displaying the message "ERR".

The procedure to zero the transducer is outlined as below:

Performing a Manual Probe Zero (On Block)

- Apply a drop of couplant on the transducer and place the transducer in steady contact with the disk (battery cover) located at the top of the unit to obtain a measurement.
- Be sure all six repeatability/stability bars in the top left corner of the display are fully illuminated and stable, and last digit of the measurement is toggling only +/- .001" (.01mm).

3. Press the

key to perform the manual zero. "PRBO" will briefly be displayed on the screen, indicating the zero calculation is being performed.

5.2 Material Calibration

In order for the TI-007DLX to make accurate measurements, it must be set to the correct sound velocity of the material being measured. Different types of materials have different inherent sound velocities. For example, the velocity of sound through steel is about 0.233 inches per microsecond, versus that of aluminum, which is about 0.248 inches per microsecond. If the gauge is not set to the correct sound velocity, all of the measurements the gauge makes will be erroneous by some amount.

The One Point calibration is the simplest and most commonly used calibration method —optimizing linearity over large ranges. The **Two Point calibration** allows for greater accuracy over small ranges by calculating both the probe zero, as well as the material velocity. The TI-007DLX provides three simple methods for setting the sound-velocity outlined on the following page:

Known Velocity

If the material velocity is known, it can be manually entered into the TI-00, rather than have the TI-007DLX calculate the velocity value using a known thickness of the same material type. The steps for entering the velocity are outlined below:

1. With the transducer free from contact with the material, press the display the current velocity.

2. Use the

and

keys to scroll the velocity to the known target value.

NOTE: The longer the keys are pressed and held, the faster the value will increment/decrement.

NOTE: Pressing the key prior to pressing the routine without saving any changes.

3. Press the key to set the velocity value and return to the measurement screen. The new velocity value will be shown at the top of the display.

Known Thickness

Often times the exact sound velocity of a material is unknown. However, a sample with one or two known thicknesses can be used to determine the sound velocity. As previously discussed, the TI-007DLX has a one or two point calibration option. The one point calibration option is most suited for linearity over large ranges. When using the one point option, the calibration should be perform on the thickest side of the measurement range for the best linearity for that range. For example, if the measurement

range is .100" (2.54mm) to 1.0" (25.4mm), the user should calibrate on a known thickness sample close to 1.0" (25.4mm).

NOTE: It's always handy to carry a set of mechanical calipers to use in conjunction with the TI-007DLX for calibration of various materials in the field:

One Point Calibration

NOTE: Be sure that a probe zero has been performed prior to performing this calibration procedure.

1. Physically measure an exact sample of the material, or a location directly on the material to be measured, using a set of calipers or a digital micrometer.

NOTE: A sample or location on the test piece should be used as close to the maximum thickness of the test range to minimize error.

- 2. Apply a drop of couplant on the transducer and place the transducer in steady contact with the sample or actual test material. Be sure that the reading is stable and the repeatability indicator in the top left corner of the display is fully lit and stable.
- 3. Press the key to enter the calibration edit screen displaying the current measurement value.
- 4. Use the + and keys to scroll to the known thickness value.

NOTE: The longer the keys are pressed and held, the faster the value will increment/ decrement.

NOTE: Pressing the key prior to pressing the key will abort the CAL

5. Once the known thickness value is being displayed, press the display the calculated material velocity edit screen.

saving any changes.

NOTE: The calculated velocity can be edited, if needed, by pressing the and keys to scroll and edit the velocity value.

6. Press the key to set the calculated material velocity and return to the measurement screen.

CHECK YOUR CALIBRATION! Place the transducer back on the calibration point and verify the thickness. If the thickness is not correct, repeat the steps above.

Two Known Thicknesses

routine without

The two point calibration should be considered when an application requires improved accuracy over a small measurement range based on tolerance requirements. This calibration option calculates both the 'probe zero' and 'velocity value. If the two point option is used, a probe zero is not required. For example, if the measurement range was .080" (2.03mm) to .250" (6.35mm), two known samples or locations on the test material

would be needed for the minimum and maximum boundaries of the test range. Using the range above, a one point calibration would be performed at .250" (6.35mm) and a two point calibration at .080" (2.03mm), or something close to the min/max values of the measurement range.

NOTE: The TI-007DLX also offers the capability of setting the 'probe zero' to use any reference standard as the 'probe zero' standard. For clarification, if it's desired to use a one inch reference of a specific material type as the 'zero' reference, performing the first point of a two-point calibration sets the internal zero of the TI-007DLX. This should be used only in manual probe zero mode "on block".

The following steps outline this procedure:

Two Point Calibration

 Physically measure a minimum and maximum calibration point of the exact sample material, or locations directly on the material to be measured, using a set of calipers or a digital micrometer.

NOTE: A sample or location on the test piece should be used as close to the minimum and maximum thickness of the test range to minimize error and improve linearity.

- Apply a drop of couplant on the transducer and place the transducer in steady contact with either the minimum or maximum sample or actual test material. Be sure that the reading is stable and the repeatability indicator in the top left corner of the display is fully lit and stable.
- 3. Press the key to enter the calibration edit screen displaying the current measurement value.
- 4). Use the + and keys to scroll to the known thickness value.

NOTE: The longer the keys are pressed and held, the faster the value will increment/ decrement.

NOTE: Pressing the key prior to pressing the routine without saving any changes.

5. Once the known thickness value is being displayed, press the key to display "1 of 2", which sets the zero value and returns to the measurement screen.

NOTE: The internal zero of the TI-007DLX is now set. The procedure above can be used to set the internal zero of the TI-007DLX to use any reference standard as the 'probe zero' standard if desired.

- 6. Repeat steps 2–4 on the second test point/location.
- 7. Press the key to display the calculated velocity edit screen.

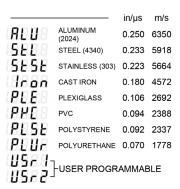
NOTE: The calculated velocity can be edited, if needed, by pressing the keys to scroll and edit the velocity value.

8. Press the

key to set the calculated material velocity and return to the measurement screen.

NOTE: CHECK YOUR CALIBRATION! Place the transducer back on the calibration points. The thickness readings should now match the known thickness values with minimal error. If the thicknesses are not correct, repeat the steps above.

Basic Material Type


If the material velocity is unknown, a sample thickness cannot be taken directly from the material, but the general type of material is known, selecting a basic material type from the common material (MATL) list in the TI-007DLX would offer a reasonable approximation of the thickness. There are 9 common materials and 2 user programmable settings available. It's important to note that these velocities will not always be an exact representation of the material being tested. Use these values only if a close approximation is acceptable. Follow the steps below to select a basic material type:

Selecting a Basic Material Type

- 1. Press the key to access the menu items/features
- 2. Use the hand he keys to scroll through the items/features until the **MATL** feature is being displayed.
- 3. Press the key to edit the material setting. The edit icon will be illuminated and flashing.

NOTE: Pressing the key prior to pressing the measurement screen without saving any changes.

4. Use the + and keys to scroll through the material options.

5. When the desired **MATL** setting is displayed press the material velocity and return to the measurement screen.

NOTE: Pressing the key prior to pressing the measurement screen without saving changes.

- 6. If **USR1** or **USR2** were selected, the velocity edit screen would be displayed and the edit conm illuminated and flashing.
- 7. Use the and keys to the desired material velocity.

NOTE: The longer these keys are held, the faster the velocity value is incremented.

8. When the desired velocity setting is displayed, press the thematerial velocity and return to the measurement screen.

NOTE: Pressing the key prior to pressing the measurement screen without saving any changes.

6.0 THROUGH PAINT MEASUREMENT

6.1 Introduction

Through paint measurement is accomplished by measuring the time between two repeat echoes from the back surface of the material. Since both of these back wall echoes travel the same path through the paint or coating, the thickness of the coating is subtracted out of the measurement so that only the actual material thickness is measured. This avoids having to scrape or remove the coating from materials prior to inspection. The primary purpose of thru paint measurement is to determine the actual/nominal material thickness without error from the coating. Finally, this mode will only work for typical epoxy based coatings.

6.2 Multi Mode Transducers

The multi echo measurement technique does have restrictions on the type of dual element transducers it can use successfully. The key requirement is that the transducers are "highly damped", which refers to the duration of how long the transducer rings. In order to improve the low end measurement range, ability to measure thin materials, the cycles of ring down must be limited so they don't interfere with the internal gating.

Since the TI-007DLX is a basic easy to operate gauge without the adjustability you'd get using an advanced A-Scan scope, echo-echo mode is subject to limitations depending on type and thickness of the coating, as well as the type of transducer used.

The procedure for activating the through paint (E-E) measurement mode is outlined as follows:

NOTE: Be sure that a probe zero and "one point calibration", or a "two point calibration" has been performed prior to this procedure.

1. Press the key to toggle between the measurement modes; pulse-echo (P-E) and echo-echo (E-E) at any time.

NOTE: An icon will be illuminated in the top left portion of the display to indicate the measurement mode the TI-007DLX is currently using.

7.0 VELOCITY GAUGE

7.1 Velocity Gauge (VX)

The TI-007DLX includes a function to convert the unit into a dedicated velocity gauge. With this feature enabled, the TI-007DLX will display all measurements in terms of velocity, inches per microsecond (IN /µs) or meters per second (M /s), rather than dimensional inches or millimeters. This is primarily useful for rudimentary "nodularity" testing, as the velocity can be associated with density and used to determine the hardness/strength of a given material. A casting manufacturer would typically use this feature to control their processes and make sure the density/hardness is sufficient for each part and batch within a specified tolerance.

Using this feature will require calibration on a "known" thickness that will remain consistent at a specific location on a group of parts. The test will always be performed at the same location for all parts in the group. The velocity will be determined, and either accepted or rejected depending on the specified tolerances.

The procedure for enabling this feature is outlined below:

- 1. Press the key to access the menu items/features.
- 2. Use the and keys to scroll through the items/features until the VX feature is being displayed.
- 3. Press the key to edit the velocity gauge setting. The edit icon will be illuminated and flashing.
- 4. Use the + and keys to toggle velocity on/off.

NOTE: Pressing the key prior to pressing the measurement screen without saving changes.

5. When the desired VX setting is displayed, press the and return to the measurement screen.

7.2 Calibration to a known thickness

In order to calibrate the TI-007DLX a 'known thickness' on the material or part will be used. The same location will be used for all the other parts in the group/batch to determine the velocity.

The procedure is outlined as follows:

NOTE: Be sure that a probe zero has been performed prior to performing this calibration procedure.

- 1. Physically measure an exact sample of the material, or a location directly on the material to be measured, using a set of calipers or a digital micrometer.
- 2. Apply a drop of couplant on the transducer and place the transducer in steady contact with the sample or actual test material. Be sure that the reading is stable and the repeatability indicator, in the top left corner of the display, is fully lit and stable.
- 3. Press the key to enter the calibration edit screen displaying the current velocity IN μ s (M/s) value. The edit icon will be illuminated and flashing.
- 4. Press the key again to edit the known thickness value. The edit icon will be illuminated and flashing and the units will be IN or MM, indicating thickness.
- 5. Use the + and keys to scroll to the known thickness value.

NOTE: The longer the keys are pressed and held, the faster the value will increment/ decrement.

NOTE: Pressing the key prior to pressing the measurement screen without saving changes.

6. Once the known thickness value is being displayed, press the to the measurement screen and display the calculated material velocity.

NOTE: The known thickness value that was used to calibrate will be displayed in the top right corner of the display for confirmation.

7.3 Calibration to a known velocity

The velocity can also be directly edited and set to a target velocity value that was previously determined from a reference standard at an earlier time.

The procedure for directly entering the velocity is outlined below:

NOTE: Be sure that a probe zero has been performed prior to performing this calibration procedure.

NOTE: This procedure requires that the operator know the sound-velocity of the material to be measured. A table of common materials and their sound-velocities can be found in Appendix A.

- Apply a drop of couplant on the transducer and place the transducer in steady contact with the sample or actual test material. Be sure that the velocity measurement is stable and the repeatability indicator, in the top left corner of the display, is fully lit and stable.
- 2. Press the key to enter the calibration edit screen displaying the current velocity IN $/\mu s$ (M /s) value. The edit icon will be illuminated and flashing.
- 3. Use the + and keys to scroll to the known velocity value.

NOTE: Pressing the key prior to pressing the measurement screen without saving changes.

- 4. Once the known velocity value is being displayed, press the tealculated thickness based on known velocity.
- 5. Press the key to return to the measurement screen and begin making measurements.

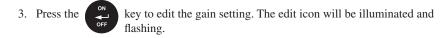
NOTE: The known velocity value that was entered will be displayed, and the thickness value calculated will appear in the top right corner of the display for confirmation.

8.0 ADDITIONAL FEATURES

8.1 Gain

The gain, or amplification of the return echoes, can be adjusted in the TI-007DLX to accommodate a variety of materials and applications. The setting of the gain is crucial in order to obtain valid readings during the measurement process. Too much gain may result in erroneous measurements, detecting on noise rather than the actual material back wall surface. Not enough gain may result in intermittent detection. If you turn it up too much, you can't hear the music clearly. If it's turned down too much, you can't hear it at all.

The TI-007DLX has the option of using and selecting three different transducer types; contact, delay line, and plastics. The contact and plastics types in pulse-echo (P-E) and plastics (PLAS) modes (PLAS; "thin" setting only), use manual gain and have five gain settings (VLOW, LOW, MED, HIGH, VHI) in 3dB increments, while the delay line style transducers use automatic gain control (AGC), and have 3 gain settings (LOW, MED, HIGH). The TI-007DLX has been optimized for the MED gain setting for all common applications. It should be operated in this mode as standard. However, some applications may require the lower or higher gain settings. When? The low settings may be necessary for noisy or granular cast materials.


How do I know when to lower the gain? If the reading becomes sporadic and won't settle down or resolve on a thickness value because the material is either very noisy or granular. Setting the gain to a lower less sensitive level, would potentially offer improved stability. How do I know when to increase the gain? When a material is difficult to penetrate or pass sound through. This could be due to the material type, overall thickness, the transducer diameter and frequency, or a combination of all the above. Turning the gain up for additional output could improve the ability to obtain a successful measurement. In any case, the selectable gain settings offer improved versatility to resolve and overcome potential application issues.

NOTE: When the echo-echo (E-E) or plastics (PLAS), thick plastic setting option, measurement modes are selected for either contact, delay line, or plastics modes, The automatic gain control (AGC) is enabled. The dynamic range of the AGC can be adjusted with the following options (LOW, MED, HIGH), with MED still being the optimized standard setting as above.

The procedure for editing the gain is outlined as follows:

1. Press the key to access the menu items/features

2. Use the GAIN feature is being displayed keys to scroll through the menu items until the

4. Use the and keys to scroll through the GAIN settings in PE/ PLAS (VLOW, LOW, MED, HIGH, VHI), or E-E, I-E, PLAS (LOW, MED, HIGH) until the desired setting is being displayed.

NOTE: Pressing the key prior to pressing the measurement screen without saving changes.

5. Press the key to set the GAIN and return to the measurement screen.

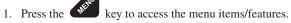
8.2 High Speed Scan

The High Speed Scan feature of the TI-007DLX increases the overall repetition rate to a maximum of 140Hz with a high speed screen refresh rate of 25 times a second. This allows for making scanned passes over an arbitrary length of the test material, while still maintaining a reasonable representation of thickness over the area or region scanned.

The procedure to use the scan feature is outlined below:

- 1. Press the key to access the menu items/features
- 2. Use the and keys to scroll through the menu items until the SCAN feature is being displayed
- 3. Press the key to edit the scan setting. The edit icon will be illuminated and flashing.
- 4. Use the and keys to toggle scan on and off.

NOTE: Pressing the key prior to pressing the measurement screen without saving changes.


5. When the desired SCAN setting is displayed, press the measurement screen.

8.3 Alarm

The Alarm feature of the TI-007DLX provides a method of setting tolerances, or limits, for a particular application requirement. This feature may be used for a variety of applications to verify the material thickness is within the manufacturer specifications. The settings available are ON/OFF/BEEP, where beep enables the audible beeper.

Both the on and beep settings will illuminate the led alarm lights above the keys on the keypad. There are two limit values HI/LO, that can be set according to specified tolerances.

The procedure to use the alarm feature is outlined below:

- 2. Use the + and keys to scroll through the items/features until the ALRM feature is being displayed.
- 3. Press the key to edit the alarm status. The edit icon will be illuminated and flashing.
- 4. Use the + and keys to toggle alarm on/off/beep.
- 5. When the desired ALRM status is displayed, press the and edit the LO limit option.
- 6. Use the hand keys to scroll the LO limit value to the target value.

Note: Pressing the key prior to pressing the key will abort to the measurement screen without saving changes to the LO limit value.

- 7. When the target LO limit is displayed, press the key to set the value and advance to setting HI limit option.
- 8. Use the + and keys to scroll the HI limit value to the target value.

Note: Pressing the key prior to pressing the measurement screen without saving changes to the LO limit value.

9. When the target **HI** limit is displayed, press the key to set the value and return to the measurement screen.

8.4 Differential

The Differential Mode of the TI-007DLX provides the user with the ability to set a nominal value, according to what the expected thickness should be, and measure the +/- difference from the nominal value entered. This feature is typically used in QA incoming inspections on pipes, plate stock, coils, etc.

The steps below outline how to enable and enter the nominal value to use this feature:

1. Press the key to access the menu items/features.

- 2. Use the hand hand keys to scroll through the items/features until the DIFF feature is being displayed.
- 3. Press the key to edit the differential status. The edit icon will be illuminated and flashing.
- 4. Use the + and keys to toggle differential on/off.
- 5. When the desired DIFF setting is displayed, press the and edit the NOMINAL value.
- 6. Use the + and keys to scroll the NOMINAL value to the target value.

Note: Pressing the key prior to pressing the key will abort to the measurement screen without saving changes.

When the target value is displayed, press the to the measurement screen.

key to set the value and return

8.5 Units

The TI-007DLX will operate in both English (inches) or Metric (millimeters) units. In either option the resolution (RES) can be set to LOW (.001in/.01mm), or HIGH(.0001in/.001mm).

The procedure to select the units is outlined as below:

- 1. Press the key to access the menu items/features.
- 2. Use the + and keys to scroll through the items/features until the UNIT feature is being displayed.
- 3. Press the key to edit the units setting. The edit icon will be illuminated and flashing.
- 4. Use the + and keys to toggle English or Metric units.
- 5. When the desired UNIT setting is displayed, press the and edit the RES (resolution) option.
- 6. Use the + and keys to scroll the RES (LOW, HIGH options)..

7. When the desired RES setting is displayed, press the resolution and return to the measurement screen.

Note: Pressing the key prior to pressing the measurement screen without saving changes.

key will abort to the

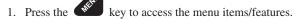
8.6 Light

The TI-007DLX uses a custom glass segmented display that is equipped with a backlight for use in low light conditions. The options are on/off/auto, where the auto setting only lights the display when the gauge is coupled to the material and receiving a measurement.

The steps below outline how to toggle the options:

- 1. Press the key to access the menu items/features.
- 2. Use the + and keys to scroll through the items/features until the LITE feature is being displayed.
- 3. Press the key to edit the light setting. The edit icon will be illuminated and flashing.
- 4. Use the + and keys to toggle status on/off/auto.

Note: Pressing the key prior to pressing the measurement screen without saving changes.


- 5. When the desired **LITE** setting is displayed, press the and edit the BRT (brightness) option.
- 6. Use the + and keys to scroll through the BRT (LO, MED, HI options.
- 7. When the desired BRT setting is displayed, press the brightness andreturn to the measurement screen.

Note: Pressing the key prior to pressing the measurement screen without saving changes.

8.7 Beep

The TI-007DLX also has a feature to use the internal beeper, most commonly used with the alarm feature, for the key strokes on the keypad. When enabled, pressing any of the keys on the keypad will sound the beeper.

The procedure to enable the keyboard beeper feature is outlined below:

2. Use the hand keys to scroll through the items/features until the **BEEPER** feature is being displayed.

3. Press the key to edit the beeper setting. The edit icon will be illuminated and flashing.

4. Use the + and keys to toggle the beeper on/off.

Note: Pressing the key prior to pressing the measurement screen without saving changes.

5. When the desired BEEP setting is displayed, press the and return to the measurement screen.

8.8 Probe Type

The TI-007DLXL can use three different probe/transducer styles for different application requirements. The styles are; CONTACT, DELAY LINE, and plastics PLAS. The corresponding option 'must' be selected to match the type of transducer connected to the TI-007DLX DL in order for the gauge to operate correctly.

The procedure to select the probe type is outlined below:

1 Press the key to access the menu items/features.

2. Use the + and - keys to scroll through the items/features until the **PROB** feature is being displayed.

3. Press the key to edit the probe type. The edit icon will be illuminated and flashing.

4. Use the hand keys to select the contact/delay line/plastics option.

Note: Pressing the key prior to pressing the measurement screen without saving changes.

5. When the desired **PROB** type is displayed, press the type and return to the measurement screen.

6. Use the + and keys to select the diameter (.125, .250, .375, .500 inches).

7. When the desired PROB diameter is displayed, press the diameter and return to the measurement screen.

8.9 Velocity (VX)

When the velocity setting (VX) is enabled, the TI-007DLX will display will the material velocity as the primary measurement quantity instead of dimensional thickness. The feature is generally used for basic "nodularity" testing, as velocity is a key part of density for determining hardness. An example might be casting manufacturers where the density/hardness will determine the strength of the material.

When this feature is enabled, the TI-007DLX is operating in reverse to the standard option of the gauge. Only the 'one point' calibration can be used with this feature active, and a manual or auto zero is still required. The TI-007DLX can be calibrated by entering the known velocity or entering the know thickness of the material at a given position on the test material. Refer to the 'making measurements' section on page 15 for a complete explanation of the zero and one point calibration procedure.

The procedure to enable the velocity feature is outlined below:

- 1. Press the key to access the menu items/features.
- 2. Use the + and keys to scroll through the items/features until the VX feature isbeing displayed.
- 3. Press the key to edit the setting. The edit icon will be illuminated and flashing.
- 4. Use the + and keys to select the on/off option.

Note: Pressing the key prior to pressing the measurement screen without saving changes.

5. When the desired VX setting is displayed, press the and return to the measurement screen.

8.10 Lock

The lock feature was built into the TI-007DLX for the purpose of locking the operators out of editing any of the gauge settings, for purposes of consistency between operators. When the lock feature is enabled, the gauge calibration functionality cannot be altered, as well as any of the individual features in the gauge. The only keys that are always unlocked are the power and probe zero keys, as these must remain unlocked for measurement functionality.

The procedure to enable/disable the lock feature is outlined below:

 With the TI-007DLX powered off, press and hold down the while powering the TI-007DLX on . The lock icon will be on the display. To unlock the TI-007DLX repeat step one, but hold down the powering the TI-007DLX on.

8.12 Factory Defaults

The TI-007DLX can be reset to factory defaults at any time to restore the original gauge settings. This should only be used if the gauge is not functioning properly, or perhaps multiple features have been enabled and a clean start is needed.

The procedure to reset the gauge is outlined below:

1. With the TI-007DLX powered off, press and hold down the keys $\qquad \qquad \text{while powering the TI-007DLX on }.$

NOTE: Once the measurement screen is displayed the keys can be released.

9.0 CONNECTIVITY AND POWER

9.1 Introduction

The TI-007DLX is equipped with a basic and convenient sequential style data logger that's intuitive to operate. By 'sequential' meaning a single column of 250 measurements and a total of 40 individual files, for a total storage capacity of 10,000 measurements. These files can then be transferred to a PC using the USB-C to USB type A cable included in the kit. When TI-007DLX is connected to a PC, it will show up in the list of drives as an external hard drive, or "thumb" drive. Open the external gauge drive, and copy the files to and from the gauge and PC.

The file format is .csv (comma separated) and can be opened using any text editor, spreadsheet editor, or Dakota's proprietary PC software supplied with the gauges. Only files with at least one measurement stored in the file will appear in the external drive folder.

9.2 Open A Data File

The following procedure outlines this procedure:

DATA

- 1. Press the key to access the data files and display the current file open.
- 2. Press the key to edit which file to open. The edit icon will be illuminated and flashing.
- 3. Use the + and keys to scroll through the files.

NOTE: Pressing the key prior to pressing the key will abort to the measurement screen without saving any changes.

4. When the desired **FILE** is displayed, press the to open the file and return to the measurement screen.

NOTE: The FILE and LOC (location) will be displayed in lower left portion of the measurement screen.

9.3 Storing a Measurement

The following procedure outlines this process:.

- 1. Use the + and keys to scroll to the desired location to store a measurement.
- 2. Press the (LOC). key to store a measurement and advance to the next location

3. Repeat steps 1 and 2 as needed.

NOTE: If an area exists where a measurement cannot be obtained successfully, press the key to store **OBST** (obstruction) in the location. Pressing the clear the location.

NOTE: If a measurement has been previously stored in a location, scrolling to that location will display the measurement currently stored, and show **MEM** (memory) in the top right corner of the display. If the measurement at that location, **FULL** will briefly be displayed on the screen indicating a measurement has already

Pressing the key will clear the previously stored measurement from the location.

Pressing the key will now store the new measurement

9.4 Clearing a File

If a file contains a large number of previously stored measurements, and has already been downloaded, the file will need to be cleared of its measurements.

The following procedure outlines this process:

- 1. Press the DATA key to access the data files and display the current file open.
- 2. Press the illuminated key to edit which file will be cleared. The edit icon will be and flashing.
- 3. Use the + and keys to scroll to the file that will be cleared.
- 4. When the desired FILE is being displayed, press the key to select the file to be cleared.
- 5. Use the + and keys to scroll to CLR (clear).
- 6. Press the key to display the confirmation screen. CLR? will be displayed, as well as a flashing Yes/No option.
- 7. Press the key for YES, and the will be key for NO. The edit icon flashing.

NOTE: Pressing the key prior to pressing the key will abort to the measurement screen without clearing the file.

8. Press the screen. key to confirm Yes/No selection and return to the measurement

NOTE: If Yes was selected a BUSY message will briefly be displayed confirming the file is being cleared.

9.5 Clear All Files

If a number of files in the TI-007DLX contain old data, or data that has been previously downloaded, clearing all the files might prove an efficient option.

The following procedure outlines this process:

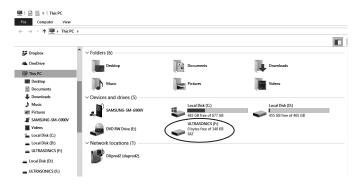
- 1. Press the DATA key to access the data files and display the current file open.
- 2. Use the + and keys to scroll to the CLR ALL option.
- 3. Press the key to display the confirmation screen. CLR ALL is displayed, as well as a flashing Yes/No option.
- 4. Press the will key for YES, and the be illuminated and flashing.

NOTE: Pressing the key prior to pressing the measurement screen without clearing the files.

5. Press the screen. key to confirm Yes/No selection and return to the measurement screen.

NOTE: If Yes was selected a BUSY message will briefly be displayed confirming the files are being cleared.

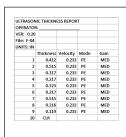
10.0 DATA TRANSFER & POWER OPTIONS

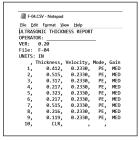

10.1 Connectivity

The TI-007DLX is connected to a PC with a USB-C to USB Type A cable, supplied with the kit (part# N-003-0330). The gauge has a file system and the PC will recognize it as an external hard disk, or thumb drive. It functions very similar to a cell phone or camera. Opening the external disk folder will display only the files that currently have data stored in them, and while the other files are physically in the directory, they are hidden until they contain data. The TI-007DLX has a maximum of 40 total files with 250 sequential readings per file.

10.2 Opening a File

The data files are stored as a .CVS (comma separated) text file, which is a very basic generic text file structure. It can be conveniently opened using any standard text editor, spreadsheet or database program. The data can easily be copied, moved or imported into reports created by a variety of software packages. With the gauge turned on and connected to your PC a drive called "ultrasonics" will appear in your list of devices:


Open the external drive to view the files.



10.3 Copying/Opening Files

Now that the files have been located and are accessible, they can either be opened from the TI-007DLX's memory, or copied to another location/folder on your PC. To accomplish this, simply 'drag and drop' files in a new folder on your PC, or on your desktop.

If you have a specific software package associated with .CSV files, like a spreadsheet editor, they can automatically be opened by 'double clicking' one of the active files in the folder. Alternatively, you can specify what software package you'd like them opened with by 'right clicking' on a specific file and using the 'open with' option in the menu.

Spreadsheet

Text Editor

10.4 Line Power

The PZX-7 DL can be powered using the standard USB-C to USB-A data cable (N-003-0330), by connecting directly to a USB port on your computer, or using a standard cell phone power adapter directly to an outlet. This is a convenient way to power the gauge for specific bench top applications in a factory line environment.

NOTE: If USB is being displayed on the display, the TI-007DLX is currently in download/transfer mode. This can be bypassed by pressing any key to abort the transfer mode, and return to actively measuring and using line power.

11.0 APPENDIX A – SOUND VELOCITY TABLE1

Material	Sound Velocity in/us		Sound Velocity m/s
Aluminum	0.2510		6375
Beryllium	0.5080		12903
Brass	0.1730		4394
Bronze	0.1390		3531
Cadmium	0.1090		2769
Columbium	0.1940		4928
Copper	0.1830		4648
Glass (plate)	0.2270		5766
Glycerine	0.0760		1930
Gold	0.1280		3251
Inconel	0.2290		5817
Iron	0.2320		5893
Cast Iron	0.1800	(approx)	4572
Lead	0.0850		2159
Magnesium	0.2300		5842
Mercury	0.0570		1448
Molybdenum	0.2460		6248
Monel	0.2110		5359
Nickel	0.2220		5639
Nylon	0.1060	(approx)	2692
Platinum	0.1560		3962
Plexiglas	0.1060		2692
Polystyrene	0.0920		2337
PVC	0.0940		2388
Quartz glass	0.2260		5740
Rubber vulcanized	0.0910		2311
Silver	0.1420		3607
Steel (1020)	0.2320		5893
Steel (4340)	0.2330		5918
Teflon	0.0540		1372
Tim	0.1310		3327
Titanium	0.2400		6096
Tungsten	0.2040		5182
Uranium	0.1130		3378
Water	0.0580		1473
Zinc	0.1660		4216
Zirconium	0.1830		4648

12.0 APPENDIX B - APPLICATION NOTES

Measuring pipe and tubing

When measuring a piece of pipe to determine the thickness of the pipe wall, orientation of the transducers is important. The transducer should be oriented so that the gap (sound barrier) in the wear face is perpendicular (at a right angle) to the length (long axis) of the tubing, allowing both sides of the transducer to make the same amount of contact. The transducer orientation can either be parallel or perpendicular for large diameter piping, as it's much easier to ensure both sides are making similar contact.

Measuring hot surfaces

The velocity of sound through a substance is dependent on its temperature. As materials heat up, the velocity of sound through them decreases. In most applications with surface temperatures less than about 200°F (100°C), no special procedures must be observed. At temperatures above this point, the change in sound velocity of the material being measured starts to have a noticeable effect upon ultrasonic measurement.

At such elevated temperatures, it is recommended that the user perform calibration on a sample piece of known thickness, which is at or near the temperature of the material to be measured. This will allow the TI-007DLX to correctly calculate the velocity of sound through the hot material.

Expansion and contraction of the transducer based on temperature, and a varying temperature gradient, will also affect the measurement in a pulse-echo (P-E) measurement mode. It is recommended that a "transducer zero" be performed often to account for the delay line changing length and adversely affecting the accuracy of the measurements.

When performing measurements on hot surfaces, it may also be necessary to use a specially constructed high-temperature transducer. These transducers are built using materials which can withstand high temperatures. Even so, it is recommended that the probe be left in contact with the surface for as short a time as needed (intermittent contact) to acquire a stable measurement.

Measuring laminated materials

Laminated materials are unique in that their density (and therefore sound-velocity) may vary considerably from one piece to another. Some laminated materials may even exhibit noticeable changes in sound-velocity across a single surface. The only way to reliably measure such materials is by performing a calibration procedure on a sample piece of known thickness. Ideally, this sample material should be a part of the same piece being measured, or at least from the same lamination batch. By calibrating to each test piece individually, the effects of variation of sound-velocity will be minimized. If the variation is relatively close, averaging the sound velocities to minimize error is another option.

An additional important consideration when measuring laminates is that many included air gaps or pockets which will cause an early reflection of the ultrasound beam. This effect will be noticed as a sudden decrease in thickness in an otherwise regular surface. While this may impede accurate measurement of total material thickness, it does provide the user with positive indication of air gaps in the laminate.

Measuring through paint & coatings

Measuring through paints and coatings are also unique, in that the velocity of the paint/ coating will be significantly different from the actual material being measured. A perfect example of this would be a mild steel pipe with .025" of coating on the surface. Where the velocity of the steel pipe is .2330 in/µsec, and the velocity of the paint is .0850 in/µsec. If the user is calibrated for mild steel pipe and measures through both materials, the actual coating thickness will appear to be approximately 3 times thicker than it actually is, as a result of the differences in velocity.

13.0 WARRANTY

ELECTROMATIC Equipment Co., Inc. (ELECTROMATIC) warrants to the original purchaser that this product is of merchantable quality and confirms in kind and quality with the descriptions and specifications thereof. Product failure or malfunction arising out of any defect in workmanship or material in the product existing at the time of delivery thereof which manifests itself within one year from the sale of such product, shall be remedied by repair or replacement of such product, at ELECTROMATIC's option, except where unauthorized repair, disassembly, tampering, abuse or misapplication has taken place, as determined by ELECTROMATIC. All returnsfor warranty or non-warranty repairs and/or replacement must be authorized by ELECTROMATIC, in advance, with all repacking and shipping expenses to the address below to be borne by the purchaser.

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE WARRANTY OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE OR APPLICATION. ELECTROMATIC SHALL NOT BE RESPONSIBLE NOR LIABLE FOR ANY CONSEQUENTIAL DAMAGE, OF ANY KIND OR NATURE, RESULTING FROM THE USE OF SUPPLIED EQUIPMENT, WHETHER SUCH DAMAGE OCCURS OR IS DISCOVERED BEFORE, UPON OR AFTER REPLACEMENT OR REPAIR, AND WHETHER OR NOT SUCH DAMAGE IS CAUSED BY MANUFACTURER'S OR SUPPLIER'S NEGLIGENCE WITHIN ONE YEAR FROM INVOICE DATE.

Some State jurisdictions or States do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation may not apply to you. The duration of any implied warranty, including, without limitation, fitness for any particular purpose and merchantability with respect to this product, is limited to the duration of the foregoing warranty. Some states do not allow limitations on how long an implied warranty lasts but, not withstanding, this warranty, in the absence of such limitations, shall extend for one year from the date of invoice.

ELECTROMATIC Equipment Co., Inc. 600 Oakland Ave. Cedarhurst, NY 11516—USA

Tel: 1-800-645-4330/ Tel: 516-295-4300/ Fax: 516-295-4399

Every precaution has been taken in the preparation of this manual. Electromatic Equipment Co., Inc., assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of information contained herein. Any brand or product names mentioned herein are used for identification purposes only, and are trademarks or registered trademarks of their respective holders

NOTES			

NOTES			